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A B S T R A C T   

The uranium boom in the United States from the 1940’s to the 1980’s was a period of extensive uranium mining 
on Native American lands. However, detailed environmental investigations of the resulting uranium pollution 
are sparse and typically ignore contributions from airborne particulate matter. The Midnite Mine is a 350-acre 
inactive open pit uranium mine located on the Spokane Indian Reservation in eastern Washington that oper
ated from 1954 to 1981. Approximately 2.4 million tons of ore and 33 million tons of waste rock were left behind 
in stockpiles and have also been utilized as gravel on access and haul roads. Although the Midnite Mine is now a 
Superfund Site, and governmental investigations of water and soil contamination have been done, no in
vestigations of airborne particulate matter pollution have been conducted. This study applies tree bark from 31 
Pinus ponderosa trees as a biomonitor of this airborne particulate matter. Bulk trace elemental analyses via 
inductively coupled plasma – mass spectrometry (ICP-MS) of tree bark show that U is the most abundant trace 
element of interest present up to 232 ppb. Other metals that are of potential human health concern include Th, 
Pb, and As which are present at 20 ppb, 104 ppb, and 20 ppb respectively. Calculated geoaccumulation indices 
determine these metals to be at high (U), moderate (Th), and low (Pb and As) levels of contamination. Detailed 
scanning electron microscopy (SEM) investigations of particulate matter from the surface of tree bark confirm 
that U and Th-bearing particulate matter exist in the <PM10 size fraction while geospatial analyses indicate that 
uranium, thorium, and arsenic contamination are centralized along the Midnite Mine access road and at the 
nearby Dawn Mill where ore was further processed. Combined, these findings indicate that the nature and 
distribution of historic airborne particulate matter from the Midnite Mine and Dawn Mill provide context for 
potentially understanding past and current illness on the reservation. In addition, much needed context for future 
health and environmental studies for both local and national Native American populations is provided.   

1. Introduction 

Mine waste and its resulting pollution are of significant environ
mental concern both globally (e.g., Hancock and Turley, 2006; Meck 
et al., 2006; Bian et al., 2009; Bian et al., 2012; Cymes et al., 2017; Srafi 
et al., 2019) and in many regions of the United States (e.g., Brown 2005; 
Krekeler et al., 2008; Krekeler et al., 2010; Geise et al., 2011; Schel
lenbach and Krekeler, 2012). Pollution studies associated with uranium 
mines are commonly carried out within the context of watersheds (e.g., 

Fernandes and Franklin, 2001; Winde and Sandham, 2004; Winde, 
2010; Committee on Uranium Mining in Virginia, 2011) or soils (Pehoiu 
et al., 2019; Committee on Uranium Mining in Virginia, 2011). While 
general air pollution studies (Basha et al., 2014) associated with ura
nium mines have been carried out, specific air dispersion investigations 
of U pollution from uranium mines are less common (e.g., Jeran et al., 
1995). Clear concerns regarding atmospheric dispersal of uranium (U) 
particulate matter from mines are warranted (e.g., Jeran et al., 1995; 
Committee on Uranium Mining in Virginia, 2011) and detailed studies 
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on the bulk distribution of U and the mineralogical controls are needed. 
The negative impacts from mine waste on socio-economically 

disadvantaged communities worldwide continue to be documented in 
the peer-reviewed literature via documentation of groundwater and 
drinking water contamination, and environmental quality analyses 
(Dambacher et al., 2007; Garvin et al., 2009; Jiang et al., 2015; Aires 
et al., 2018; Babayan et al., 2019; Pal and Mandal, 2019). Within the 
context of the United States, this is particularly true with respect to 
Native American communities (Moore-Nall, 2015; Lewis et al., 2017). 
Adding complexity to mine waste studies is that access to Native 
American Lands are variously restricted and numerous complexities 
normally exist in research on Native American Lands (e.g., U.S. 
Department of the Interoir, Bureau of Indian Affairs, 2020). 

However, compared to other regions and communities throughout 
the U.S., detailed studies of mine waste and its potential environmental 
and/or health impacts are uncommon (e.g., Zota et al., 2009; Credo 
et al., 2019). The Spokane Indian Reservation in Washington state is 
only one example of a Native American community that has historically 
been significantly impacted by mining operations, specifically uranium 
mining at the Midnite Mine. To date, the nature and spatial relationship 
of pollution from these intensive mining operations on the short and 
long-term health of the local communities remains poorly constrained. 
Specifically, the nature of potential airborne contaminants across the 
Spokane Indian Reservation remains unassessed. 

The Midnite Mine is a 350-acre inactive open pit uranium mine 
located on the Spokane Indian Reservation in eastern Washington 
(Fig. 1). The site is currently in remediation. In 1954 when uranium was 
discovered 9 km west of the main village of Wellpinit, the land was 
leased by the Spokane Tribe to the Dawn Mining Company (a subsidiary 
of Newmont USA Limited). Uranium was mined from 1955 to 1965 

under contracts with the Atomic Energy Commission (AEC) and from 
1969 to 1981 under contracts with the energy industry. In total, 5.3 
million tons of ore were mined averaging a concentration of approxi
mately 0.2% uranium oxide (U3O8). 

At the abandoned mine site, 2.4 million tons of ore and 33 million 
tons of waste rock were left behind in stockpiles, and concurrently uti
lized as gravel for access and haul roads. The majority of the open pits 
have been backfilled with waste material, however two of the pits 
remain open and have accumulated water. There are three natural 
drainages from the mined area that converge and flow into Blue Creek 
and then into the Spokane River arm of Lake Roosevelt (Fig. 1). As part 
of the current remediation efforts, ponds and seeps in the mined area are 
pumped to the largest open pit where a water treatment plant imple
ments barium chloride and lime to facilitate the precipitation of radium 
(Ra), U, and other toxic metals. The resulting radioactive sludge is then 
hauled to the Dawn Mill site for processing and disposal. The Dawn Mill 
is the Dawn Mining Company’s mill site located adjacent to the reser
vation border ~20 km east of the Midnite Mine (Fig. 1). During mining 
operations, ore was hauled in open bed trucks across the reservation to 
the Dawn Mill for processing. From 1955 to 1982, the Dawn Mill pro
duced approximately 11 million pounds of yellow cake (finely milled 
uranium oxide). A tailings pond, several tailings disposal areas, and 
approximately 16 acres of stockpiled ore were subsequently left behind 
at the mill site. 

In 1999, the U.S. Environmental Protection Agency (EPA) investi
gated surface water, groundwater, aquatic sediments, surface materials, 
sub-surface materials, and airborne radon activity at the Midnite Mine 
(U.S. EPA, 2005a; U.S. EPA, 2005b). These investigations identified 22 
contaminants of potential concern (COPC) including U, Ra, manganese 
(Mn), arsenic (As), lead (Pb), vanadium (V), nickel (Ni), cobalt (Co), 

Fig. 1. Map of study area. Black triangles represent locations of sampled tree bark. The inset map shows the location of the study area within the Spokane Indian 
Reservation and the NW and SE background locations. The bottom left shows the dominant wind direction at the Midnite Mine is to the NE and secondary wind 
direction is to the SW (wind rose adapted from EPA 2005b). 

L. Flett et al.                                                                                                                                                                                                                                     



Environmental Research 194 (2021) 110619

3

chromium (Cr), and cadmium (Cd). From this work, the largest identi
fied cancer risk was determined to be derived from inhalation of 
contaminated groundwater used in sweat lodge ceremonies, and con
sumption of local plants and meat. In May 2000, the Midnite Mine was 
designated as a Superfund Site. Remediation began in 2009 and is ex
pected to continue through 2025. 

The estimated population on the Spokane Indian Reservation is 2145 
with 32.9% of this population living below the poverty level. This is 
more than twice the national average of 13.1% (US Department of 
Commerce, 2017; U.S. Department of Commerce, 2019). Members of the 
Spokane Tribe living on the reservation rely on the land for subsistence 
and traditional ceremonial activities. For example, wild game, fish, 
roots, and berries are regularly consumed for subsistence, while surface 
and groundwaters are used for drinking and sweat lodge ceremonies. 
Various plants across the reservation are also used for medicinal and 
ceremonial purposes. Individual members of the tribe are allowed, and 
encouraged to, partake in these activities anywhere on the reservation. 
This traditional lifestyle makes tribal members susceptible to exposure 
of environmental contaminants through multiple pathways. 

The Spokane Tribe has worked with an environmental company to 
create the basis for a reasonable maximum exposure (RME) that fits their 
traditional subsistence lifestyle better than the standard RME used by 
the EPA (Harper et al., 2002). The EPA used the tribal RME when 
calculating exposure hazards in the health risk assessment, however, it 
was noted during their study that the risks and hazards associated with 
the mine were significantly above their target health goals no matter 
which RME was used (U.S. EPA, 2005a). 

The main concerns of tribal members, as communicated to the 
Agency for Toxic Substances and Disease Registry (ATSDR), were: 
perceived high rates of disease on the reservation that they worry could 
be attributed to exposure to mine contaminants; the loss of a large 
portion of the reservation which can no longer be used for hunting, 
fishing, gathering, and ceremonial use; and the social changes and stress 
experienced by the tribe (ASTDR, 2010). The USEPA have thoroughly 
investigated the water, sediments, and soils surrounding the mined area. 
However, no studies have been conducted which focus on investigating 
the nature of airborne particulate matter and the associated inhalable 
size fractions, both of which have the potential to significantly impact 
the health of the population of the reservation. Despite these 
long-standing concerns, no health studies have ever been conducted 
which investigate the impacts uranium mining has had on health on the 
reservation. 

Land use on the reservation is primarily for timber, forestry, livestock 
grazing, and agriculture. Hence, local sources of environmental pollu
tion are predominantly from vehicular exhaust products and abandoned 
mines. Precaution must be taken when establishing an accurate natural 
background level because some contaminants, such as U, As, Pb, Mn, 
and copper (Cu) are naturally elevated in various environmental media 
due to the geologic bedrock composition of the area (Ames et al., 1996; 
U.S. EPA, 2005a; U.S. EPA, 2005b; Church et al., 2007). Natural back
ground levels alone present risks above the EPA’s target health goals, 
however, this contribution is not identified as dominant when estab
lishing overall risk (U.S. EPA, 2005a). The processes associated with 
mining and milling work to increase the rate of weathering and trans
port of contaminants and pollutants which otherwise would have 
remained buried and contained within the bedrock. 

Previous studies of the mined area have documented elevated levels 
of U, Pb, As, and molybdenum (Mo) in soils (Boudette and Weis, 1956; 
Stroud and Droullar, 1995), elevated levels of U, Ra, sulfate, Mn and 
other metals, in surface and groundwater (Marcy et al., 1994; Schultze 
et al., 1996; Suzuki et al., 2002), elevated levels of U, As, Mn, Ni, Co, Cu, 
Cd, and Pb in aquatic sediments (Church et al., 2007), and high doses of 
gross gamma radiation in the mined area (Stroud and Droullar, 1995; U. 
S. EPA, 2011). Several studies have also suggested microbial remedia
tion and ion exchange as feasible options to treat contaminated water at 
the site (Marcy et al., 1994; Schultze et al., 1996; Suzuki et al., 2002). 

Across the United States an estimated 286,346 Native Americans live 
within <10 km of a uranium (or vanadium) mine site (Lewis et al., 
2017). To date, a systematic study of the long-term impacts of pollution 
resulting from historic uranium mining on the health of the Spokane 
Indian Reservation remains lacking (Moore-Nall, 2015; McDermott, 
2019). Historically, and potentially to a lesser degree, current inhalation 
of dust derived from the Midnite uranium mine across the reservation, 
particularly in proximity to the mine site, is of potential environmental 
health concern (Lewis et al., 2017; Hettiarachchi et al., 2018; Zychowski 
et al., 2018; Entwistle et al., 2019). Historic activities of the mine that 
contribute to dust dispersal include processes such as drilling, blasting, 
use of haul trucks, and wind action on ore and waste rock. Current 
processes that have the potential to release dust into the environment 
include continued wind action and the airborne transport of mine waste 
as stockpiles of material are used in resurfacing graveled roads. The 
extent to which historic dispersion of uranium mine waste has occurred 
throughout the reservation as a result of drilling and detonations, nat
ural wind currents, and vehicular traffic remains unconstrained. To date, 
no study has systematically investigated the nature and dispersion of 
this airborne particulate matter. Although present day levels of airborne 
particulate matter are likely lower in its current remediation state 
compared to when the mine was active, historic levels were likely higher 
owing to the multiple active mining processes. This airborne particulate 
matter would have had the potential to be dispersed across the Spokane 
reservation away from the mine. From the 2011 EPA investigation radon 
gas was determined to be the most pertinent threat with respect to po
tential inhalation exposure. No COPCs were considered within inhala
tion contexts, either at the present day or historically. 

Since 2016, the Dawn Mining Company has been using total sus
pended particulate (TSP) monitors at the mine site to monitor fugitive 
dust caused by remediation activities (Dawn Mining Company, 2016). 
To date, the nature of airborne particulate matter related to remediation 
activities also remains uncharacterized for its mineralogy and/or 
geochemistry. 

Environmental media choices for investigating the nature and dis
tribution of airborne particulate matter derived from the Midnite Mine 
are highly limited. There are no nearby lakes or ponds distributed such 
that they could spatially and temporally capture particulate matter in 
the fine-grained sediment on the lake floor (e.g., Korosi et al., 2018; Aliff 
et al., 2020). The surrounding area is however heavily forested with 
Pinus ponderosa (Ponderosa Pine) which occurs on hilly to mountainous 
terrain. The porous texture of the surface of the tree bark works to 
passively entrap particles from the air over extended periods of time, 
potentially throughout the life of the tree at that height (e.g., Martin and 
Coughtrey, 1982; Chrabaszcz and Mroz, 2017). This permits the tree 
bark to be a widespread, easily accessible, and cost-effective biomonitor 
of past and present airborne particulate matter. For example, tree bark 
has been effectively used to investigate U in airborne particulate matter 
from pollution sources such as nuclear reactors and U processing facil
ities in the UK, Japan, and the Midwest of the United States (Bellis et al., 
2000, 2001a; Conte et al., 2017). Pinus sp. in particular have been used 
extensively as biomonitors in numeorus localities globally. Examples 
include that of Austrian pine (Pinus nigra Arnold.; Coskun, 2006); Italian 
stone pine (Pinus pinea L.; Oliva and Mingorance, 2006); Masson pine 
(Pinus massoniana Lamb.; Kuang et al., 2007); Mondell pine (Pinus eld
arica Medw.; Kord and Kord (2011); Scots pine (Pinus sylvestris L.; 
Laaksovirta et al., 1976; Dogan et al., 2010); Turkish red pine (Pinus 
brutia Ten.; Dogan et al., 2007). In addition, several recent studies have 
used tree bark biomonitoring in conjunction with Geographic Informa
tion Systems (GIS) methods to investigate spatial trends in airborne 
particulate matter (Bellis et al., 2001b; Schelle et al., 2007; Gueguen 
et al., 2011; Kousehlar and Widom, 2019, 2020). From a variety of 
previous environmental pollution-based studies, tree bark from the Pinus 
ponderosa in particular has also been established as a highly effective 
biomonitor of airborne particulate matter and as a time-integrated re
cord of environmental pollution (Schaumloffel et al., 1998; Schulz et al., 
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1999; Padilla and Anderson, 2002; Saarela et al., 2005; Peckham et al., 
2019). 

The objective of this study is to therefore use Pinus ponderosa tree 
bark to: (1) characterize the historic nature of airborne particulate 
matter on the Spokane Indian Reservation with respect to the miner
alogy and size of particulate matter and the associated concentration of 
elements of environmental concern; (2) assess the level of potential 
contamination that exists across the reservation via the establishment of 
geoaccumulation indices and; (3) determine if the concentration of el
ements of environmental concern that are associated with airborne 
particulate matter are spatially related to the Midnite Mine. 

2. Methods 

2.1. Sampling Pinus ponderosa on the Spokane reservation 

Tree bark samples (n = 31) were collected across the study area in 
November 2017 where access was possible (Fig. 1). The tree species 
sampled was kept constant throughout the sample region. Accordingly, 
only Pinus ponderosa trees were sampled. The concentrations of metal 
contaminants in tree bark have been shown to vary significantly across 
the height of a tree with peak concentrations documented to occur be
tween 1 and 2 m (Ward et al., 1974; Barnes et al., 1976). Therefore, a 
consistent sampling height of 1.5 m has been the long-running standard 
reported in the majority of tree bark studies (e.g., Hamp and Holl, 1974; 
Schulz et al., 1999; Gueguen et al., 2012; Birke et al., 2018). The ages of 
sampled trees varied from 70 to 139 years. This age range was calculated 
based on circumference measurements and a growth factor of 4. Tree 
bark samples taken on the reservation (n = 24) were sampled in the 
direction facing the Midnite Mine in order to capture and document the 
highest concentration of windblown contaminants. Similarly, samples 
taken at the Dawn Mill processing site (n = 3) were taken in the direction 
facing the mill. Samples taken at background locations to the northwest 
and southeast of the reservation (n = 4) were sampled in the direction 
that faced away from any roads in order to minimize contamination 
from traffic-related particulate matter. The total number of background 
samples at n = 4 for this study is demonstrably comprehensive and was 
in part informed by prior work which also utilized biomonitors within 
the context of pollution (e.g., no background sample(s), Bellis et al., 
2001; one background sample for 19 total samples, Conte et al., 2017; 
one background sample for 23 total samples, Kousehlar and Widom, 
2020). A chisel was carefully used with gloved hands to undercut and 
remove a chunk of bark from the targeted tree, which was then stored in 
a heavy-duty Ziploc bag (sampled tree bark ranged from 7 g to 38 g with 
a median of 28 g). At each sampling location, GPS coordinates were 
taken using a Trimble Geo 7x handheld GNSS system. 

2.2. Sample preparation 

Sampled tree bark was dried at 100 ◦C for 24 h to remove moisture. 
Samples were then coarsely crushed and ashed in a Thermo Scientific 
Thermolyne 6028 furnace, in batches of 5–6 at 350 ◦C. Time spent 
ashing varied from approximately 2 to 5 weeks as samples were peri
odically weighed and were only considered complete when mass was no 
longer being significantly lost (less than 1% change in 48 h). Repeat 
dissolution of two international standards (NBS 1632a; coal, and NIST 
1547; peach leaves) were prepared throughout the ashing process in 
addition to 5 total procedural blanks. Ashed samples were digested in a 
Mars 6 Microwave Digestion System (CEM Corporation) at the Stable 
Isotope Laboratory facility at the University of Arkansas utilizing the 
approach presented in Becker et al. (2000). Specifically, samples were 
digested in a mixture of concentrated nitric acid (16 ml) -hydrochloric 
acid (4 ml). Digested sample solutions were made up to 50 ml with the 
addition of high purity MilliQ H2O. Solutions were centrifuged after 
which a 0.5 ml aliquot was taken and diluted at 20x through the addition 
of 9.5 mls of 2% HNO3. Sample dissolution procedures were monitored 

through the repeat analysis of NBS 1632a and NIST 1547 which were 
treated identically to all unknowns (samples) throughout the sample 
preparation procedure. 

2.3. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

Sampled tree bark ash, standards, and total procedural blanks were 
analyzed for their elemental compositions via a Thermo iCap Induc
tively Coupled Plasma Mass Spectrometry (ICP-MS) at the Trace 
Element and Radiogenic Isotope Laboratory (TRAIL) at the University of 
Arkansas. The ICP-MS was calibrated by using two multi-element stan
dards (68 A and 71 B, High Purity Solutions). Calibration curve mea
surements were made using a series of seven dilutions with 
concentrations ranging from 1 ppb to 1000 ppb. The elements measured 
were: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Y, Nb, Sn, Sb, Ba, La, Ce, Pr, Nd, 
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, Th, U. Sample data is 
reported in Table 1 in supplemental data. Repeat analysis of the NBS 
1632a and NIST 1547 standards are reported in Table 2 in supplemental 
data. 

2.4. Calculation of geoaccumulation indices (Igeo) 

To determine which elements are enriched relative to background 
samples, geoaccumulation indices (Igeo) were calculated for each 
element in all samples. Igeo was specifically calculated using the 
following approach (after Barbieri, 2016): 

Igeo = ln[(concentration)/(1.5*background concentration) ]

Background concentration was constrained by the mean concentra
tion of the background tree bark samples. The resulting Igeo indices 
represent the level of contamination where Igeo >0 is characterized as 
potentially contaminated, Igeo >1 is characterized as moderately 
contaminated, Igeo >3 is characterized as heavily contaminated, and 
Igeo >5 is characterized as extremely contaminated. 

2.5. Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) was performed using a Zeiss 
VP35 model field emission scanning electron microscope (FESEM) at the 
Center for Advanced Microscopy and Imaging (CAMI) at Miami Uni
versity. Subsamples of tree bark were dried and were then cut to 1–2 mm 
thick pieces, mounted on aluminum stubs, coated with carbon, and 
grounded with colloidal silver. Ashed tree bark, soil, and street sediment 
samples were mounted onto aluminum stubs using carbon sticky tabs 
and were left uncoated. Samples were scanned for particles of high 
atomic weight and density using backscatter detection (BSD) mode. 
Particles of interest were imaged using secondary electron detection 
(SED) and BSD modes. Energy dispersive spectrometry (EDS) was used 
to detect elements present using an EDAX2000 system with a detection 
limit of approximately 0.1 wt %. In total, 9 tree bark samples were 
investigated via SEM including 1 from each background site, 1 from the 
Dawn Mill, 3 from the Midnite Mine access road, and 3 along Wellpinit- 
Westend Road. Also investigated were 8 tree bark ash samples (1 access 
road, 2 mill, and 5 along Wellpinit-Westend Road), 4 soil samples (1 
south of the mine and 2 along Wellpinit-Westend Rd), and the 3 street 
sediment samples (mine access road, mill, and high school). 

2.6. Geospatial analysis 

Geochemical and GPS point data were imported into ArcGIS Pro for 
spatial analyses of airborne U and metal particulates (DeLemos et al., 
2009). Graduated symbology maps of the concentrations of select ele
ments (those of environmental health concern) identify and assess their 
spatial distribution. Additionally, inverse distance weighting (IDW) 
interpolation maps of Igeo indices were created to estimate contami
nation levels throughout the study area. IDW interpolation was chosen 

L. Flett et al.                                                                                                                                                                                                                                     



Environmental Research 194 (2021) 110619

5

due to the non-Gaussian nature of the data, aligning with established 
spatial analysis protocols for geology (Setianto and Triandini, 2013). 

3. Results 

3.1. Bulk geochemical data 

The concentrations of the 32 elements analyzed in tree bark ash are 
summarized in Table 1 of the supplemental data. Within the context of 
this study, only those identified as being of potential environmental 
concern are further considered here. In general, concentrations of U are 
the highest along the Midnite Mine access road (min = 29.74 ppb, max 
= 179.94 ppb, mean = 78.75 ppb) and at the Dawn Mill (min = 4.94 
ppb, max = 281.78 ppb, mean = 154.01 ppb) and are lowest at the two 
background sites (min = 0.37 ppb, max = 0.83 ppb, mean = 0.61 ppb). 
Similarly, the highest concentrations of Th, As, yttrium (Y), and heavy 
rare earth elements are recorded along the mine access road and at the 
mill. 

When linear regressions are applied to the data (Fig. 2), U correlates 
positively with Y (R2 = 0.80, p < 0.001), Nb (R2 = 0.76, p < 0.001), and 
heavy rare earth elements such as ytterbium (Yb) (R2 = 0.89, p < 0.001). 
U also positively correlates moderately well with Th (R2 = 0.59, p <
0.001) and As (R2 = 0.56, p < 0.001). Strong to moderate positive 
correlations also exist among all combinations of As, Co, Ni, and iron 

(Fe) (R2 varying from 0.50 to 0.88 and all at p < 0.001) and all com
binations of U, Th, As, Nb, Y, and Yb (R2 varying from 0.56 to 0.95 and 
all at p < 0.001). 

3.2. Geoaccumulation indices (Igeo) 

The range of geoaccumulation indices (Igeo) from minimum to 
maximum for each element are shown in Fig. 3. There are 7 elements 
with at least one quartile of samples extending above 0. They are as 
follows: As (min = − 1.28, max = 0.75, mean = − 0.14), Y (min = − 0.78, 
max = 1.15, mean = 0.19), barium (min = − 1.20, max = 0.79, mean =
− 0.07), La (min = − 0.84, max = 0.49, mean = 0.04), Pb (min = − 1.77, 
max = 0.89, mean = − 0.01), Th (min = − 0.99, max = 1.69, mean =
0.43), and U (min = − 0.30, max = 5.73, mean = 1.84). Additionally, Th 
is at moderate contamination levels in 4 samples (1.14–1.69), while U is 
at moderate contamination levels in 8 samples (1.03–2.95), heavy 
contamination levels in 7 samples (3.17–4.93), and extreme contami
nation levels in 3 samples (5.26–5.73). All of the remaining elements 
analyzed are at uncontaminated levels in the majority of samples. Ele
ments of further interest were selected based on the distribution of Igeo 
indices in conjunction with the potential toxicity of the element. Using 
these two criteria, the elements of interest chosen for further consider
ation in this study are U, Th, Pb, and As. 

Fig. 2. Linear regressions of bulk geochemical data showing the correlations between elemental concentrations in tree bark ash among all samples (n = 31).  
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Fig. 3. The distribution of geoaccumulation (Igeo) indices of select elements in all non-background samples (n = 27). The boxes represent the 2nd and 3rd quartiles 
and the whiskers represent the 1st and 4th quartiles. 

Fig. 4. EDS spectra (a–c) with paired mi
crographs of select U-rich particles (d–f). (a) 
Major peaks indicate U (3.164 and 13.612 
keV), Nb (2.166 keV) and O (0.525 keV) are 
the major constituents. Si (1.739 keV), Fe 
(6.398 keV), and Al (1.486 keV) also pre
sent. (b) Prominent peaks indicate Th (2.991 
and 12.967 keV), U, Si, O, Al, and Fe are 
present. (c) Dominant peaks indicate U, Y 
(1.992 and 14.931 keV), Si, O, Fe, and Ca 
(3.690 keV) are present. (d) U–Nb-rich par
ticle of approx. 5.5 μm diameter from a mill 
tree bark sample. Imaged in secondary 
electron detection mode (SED) at 15.00 keV. 
(e) U–Th-rich particle of approx. 4.6 μm 
diameter from street sediment of the mine 
access road. Imaged in backscatter detection 
mode (BSD) at 25.00 keV. (f) U–Y-rich par
ticle of approx. 4.8 μm diameter in the ash of 
tree bark from the mill. Imaged in SED at 
25.00 keV.   
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3.3. SEM 

3.3.1. Uranium 
In total, 6 U-rich particles were found using SEM. Three particles 

were in tree bark or tree bark ash, and three occurred in street sediment. 
All the U-rich particles contained significant amounts of Fe, most of 
them were Nb-rich (4 out of 6), one was Th-rich, and one was Y-rich. All 
of the observed U-rich particles were found in samples from the mine 
access road or the mill. The diameters of these particles varied from 1.0 
μm to 5.5 μm. Select U-rich particles are shown in Fig. 4. 

3.3.2. Thorium 
A total of 11 Th-rich particles were found, two particles were in ash, 

two were in street sediment, and seven were in soil samples. These 
particles were found near the mine, the mill, the main village of Well
pinit, and at various locations throughout the reservation. All Th-rich 
particles also contained detectable phosphorous (P), calcium (Ca), and 
Fe. Two of the particles were also cerium (Ce)-rich, 1 was U-rich (indi
cated above), and 5 of the particles contained small amounts of light rare 
earth elements. Diameters varied from 1.1 μm to 8.5 μm. Select Th-rich 
particles are shown in Fig. 5. Additionally, Th as a trace element in REE 
phosphates was ubiquitous throughout all sample types and locations. 

3.4. Arsenic and lead 

One As and Fe-rich particle was found using SEM. It occurred in a 
tree bark sample from the mine access road. The particle was a flake 
approximately 8.5 μm wide and 1 μm thick. Two Pb-rich particles were 
found in tree bark and tree bark ash. One Pb and Fe-rich particle was 
identified in a sample from the mill site and one Pb and Cr-rich particle 
was in a sample 5 km south of the mine. The diameters were 9.1 μm and 
11.4 μm respectively. 

3.5. Results of geospatial analysis 

3.5.1. Concentration maps 
In general, the highest U and As concentrations appear to concen

trate along the mine access road and at the mill (Fig. 6). Thorium is a 
little more broadly distributed, but the highest concentrations are 
located at the mill, on the mine access road near its intersection with the 
main road, and in one sample to the southwest of the mine on the main 
road. Lead concentrations are the most diffuse with the highest con
centrations occurring along the main road throughout the study area 
and localized at the mill. Also of note, some of the lowest Pb concen
trations occur along the mine access road. 

Fig. 5. EDS spectra (a–c) with paired mi
crographs of select Th-rich particles (d–f). 
(a) Major peaks indicate Th, Si, O, Al, Fe, Ca, 
P (2.103 keV), and S (2.307 keV) are pre
sent. (b) Peaks indicate Ca, P, O, Th, Si, S, 
and Fe are present. (c) Peaks indicate Ce, Th, 
O, Si, Al, P, Ca, and Fe are present. (d) Th- 
rich particle of approx. 1.1 μm diameter in 
tree bark ash from the mill. Imaged in BSD at 
20 keV. (e) Th-rich particle (the smooth 
particle behind the flakey textured particle) 
of approx. 3.9 μm diameter from mine access 
road tree bark ash. Imaged in SED at 25.00 
keV. (3) Ce–Th-rich particle of approx. 8.5 
μm diameter in a soil sample 5 km south of 
the Midnite Mine. Imaged in BSD at 20.00 
keV.   
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3.6. Igeo interpolation maps 

The Igeo indices of the elements of U, Th, Pb, and As, are interpolated 
throughout the study area in Fig. 7. By these estimations, the level of 
uranium contamination is highest at the mill and on the mine access 
road, with contamination levels decreasing with distance away from 
these identified hotspots. Only one small area north of Wellpinit is 
estimated to be uncontaminated with U as indicated by Igeo at 
<0 (Fig. 7). Levels of thorium contamination are estimated to be the 
highest at the mill and at the intersection of the mine access road and 
main road, with thorium contamination near the mine access road 
extending to the south. Wellpinit, the central portion of the study area, 
and the western side of the study area are estimated to be uncontami
nated by Th. The interpolated levels of lead contamination are highest at 
four points along the main road to the east and west of the mine. Another 

area of relatively high estimated lead contamination occurs in Wellpinit. 
The mine access road is estimated to be uncontaminated by Pb, but there 
is the potential for low lead contamination levels near the mill. The level 
of arsenic contamination is highest at the mill and along the mine access 
road. The area surrounding Wellpinit is also potentially contaminated 
with As. Arsenic contamination is estimated here to be restricted to the 
vicinity of the mine access road, Wellpinit, and the mill, while the rest of 
the study area is estimated to be uncontaminated. 

4. Discussion 

4.1. Potential for inhalation of particulate matter 

It is well established that a connection exists between exposure to 
toxic airborne particulate matter and short-term and long-term adverse 

Fig. 6. Concentration maps of samples from U, As, Th, and Pb (concentrations of n = 27). Symbology classes based on Jenks natural breaks.  
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health effects (e.g., Nel, 2005; Pope and Dockery, 2006; Valavanidis 
et al., 2008). Particulate matter is known to be the most significant 
aspect of air pollution with direct negative health outcomes (e.g., 
Valavanidis et al., 2008). In general, the smaller the diameter of 
airborne particulate matter, the greater the potential impact on human 
health as the smaller the particle, the higher the probability that particle 
has for penetrating the deep lung. The commonly used distinctions are 
PM10 (diameter less than 10 μm) and PM2.5 (diameter less than 2.5 μm). 
PM10 is small enough to be inhaled, however PM2.5 is known to have a 

stronger correlation with negative health effects because it can pene
trate deeply into the lung, it has more surface area per volume, and is 
more commonly retained in lung tissue than PM10 (e.g., Seaton et al., 
1995; Valavanidis et al., 2008). Tree bark as a proxy of potentially 
harmful airborne particulate matter, may be therefore an effective way 
to predict negative health outcomes. For example, a recent study found 
strong correlations between the concentrations of Al, S, Mn, Fe, Cu, and 
Zn in tree bark and mortality rates from both lung cancer and COPD 
(Carvalho-Oliveira et al., 2017). While it is acknowledged that the 

Fig. 7. Maps of select Igeo indices interpolated from Midnite Mine to Dawn Mill using inverse distance weighting (IDW) and all sample points (n = 31) of U, As, Th, 
and Pb. 
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toxicity and health effects of airborne particulate matter can vary based 
on chemical composition, radionuclides and heavy metals such as those 
identified as contaminants in this study (U, As, Th, Pb) do have the 
potential to be damaging to human health (e.g., Duruibe et al., 2007; 
Tchounwou et al., 2012). 

4.2. Uranium 

Although there is potential for U to be mobilized and taken up by 
trees, such as Quercus velutina (black oak), from water sources enriched 
in dissolved U (Edmands et al., 2011), U concentrations in bulk chemical 
analyses are interpreted to be from U particulate matter and not from 
dissolved U absorbed by tree bark. There is a reasonably strong corre
lation of niobium (Nb) and U in bulk chemical data and there is ample 
evidence of U-Nb-bearing particulate matter entrapped in the bark as 
indicated by SEM data. Literature exists on Pinus ponderosa, and related 
micronutrients (e.g., Walker et al., 2000; VanderSchaaf et al., 2004) but 
to date there has been no documentation of niobium serving as a 
micronutrient for Pinus ponderosa, or any other organism. Uranium 
concentrations in bulk chemical analysis of bark are therefore inter
preted to be entirely associated with the particulate matter. 

Uranium is the most highly concentrated element in tree bark rela
tive to background values. Uranium in particulate matter along the 
Midnite Mine access road and at the Dawn Mill occurs at statistically 
extreme levels of observed contamination. The east mine access road is 
of particular concern within the context of environmental health 
because it was the primary access road used to haul ore off site when the 
mine was in operation. Ore was hauled in open bed trucks which have 
been documented to spill ore on roadways between the Midnite Mine 
and the Dawn Mill (Dawn Mining Company, 2005). The access roads are 
also known to have been resurfaced using waste materials from the mine 
(U.S. EPA, 2005b). 

While uranium contamination does not appear to be significant in 
the main village of Wellpinit, geospatial studies of the health effects 
from environmental pollutants on Indian reservations need to incorpo
rate knowledge of tribal culture in order to truly assess and compre
hensively represent risks. On the Spokane Indian Reservation, the 
Midnite Mine is located in the unpopulated center of the reservation, 
however, the traditional subsistence lifestyle entails utilizing the entire 
reservation for hunting, fishing, gathering, and ceremonial use. Resi
dents on the Spokane Indian Reservation could be reasonably expected 
to be partaking in these outdoor activities near the mine where inhala
tion of U in airborne particulate matter is a potential risk. Moreover, low 
to moderate levels of uranium contamination in airborne particulate 
matter extend throughout most of the study area, including Wellpinit. 
Previous studies have shown that uranium is also a contaminant in 
groundwater, surface water, soils, and aquatic sediments associated 
with the Midnite Mine (Marcy et al., 1994; Ames et al., 1996; U.S. EPA 
2005a; U.S. EPA 2005a, b; Church et al., 2007). 

The U-rich particles observed in tree bark are considered small 
enough to be inhaled (aerodynamic diameter smaller than 10 μm) and in 
some cases can reach the deep lung (aerodynamic diameter smaller than 
2.5 μm). Uranium-rich particles in the ultra-fine size fractions were not 
observed in tree bark or tree bark ash but could still be present as these 
fractions are below the detection limit of the SEM. The SEM methods 
used cannot observe all nanoscale particles and biases in visually scan
ning samples for atomically dense particles in BSD mode may translate 
to larger particles being more commonly identified and investigated. 
Furthermore, challenges exist with SEM investigations of granular ma
terials, or materials where particles may be embedded in other media, as 
particles present at lower abundances may simply be obscured by 
matrices of other materials or particles. 

4.3. Thorium 

Thorium is at low to moderate levels of contamination in the 

analyzed tree bark samples. Thorium contamination appears to be 
concentrated around the Dawn Mill and at the opening of the Midnite 
Mine access road near its intersection with Wellpinit-West End road. 
Thorium and U share similar chemical properties and therefore can 
partition into the same minerals, which may partially explain the cor
relation between the two elements. Furthermore, uraninite (one of the 
major ore minerals at the Midnite Mine) is known to contain significant 
amounts of Th, Y, and REEs (Boudette and Weis, 1956; Barrington and 
Kerr, 1961; Nash and Lehrman, 1975) which could explain some of the 
observed correlations between all of these elements. The EPA also 
designated Th as a COPC in haul road soil (U.S. EPA, 2005a). The Th-rich 
particles observed in the tree bark and tree bark ash had diameters of 1.1 
and 3.9 μm, indicating that there are PM2.5 Th-rich particles present. 

4.4. Arsenic 

Arsenic was observed in airborne particulate matter on the Spokane 
Indian Reservation at low levels of contamination. Clusters of high 
arsenic concentrations and Igeo indices are found adjacent to the Dawn 
Mill and the main Midnite Mine access road. This observed arsenic 
contamination is likely sourced from uranium mining and processing. At 
the Midnite Mine, As is known to be geologically related to the uranium 
ore deposits (Boudette and Weis, 1956; Barrington and Kerr, 1961). 
Uranium ore at the mine is closely associated with arsenopyrite and 
various iron sulfides which can commonly contain As as an impurity 
(Majzlan et al., 2014). One of the most common U-bearing minerals at 
the Midnite Mine, coffinite, also commonly contains As (Steiff et al., 
1956; Boltsov and Kaikova, 1964; Majzlan et al., 2014). Arsenic has been 
identified as a contaminant in sediments directly downstream from the 
Midnite Mine and the EPA designated it as a COPC in surface sediments 
of the mined area (U.S. EPA, 2005a; Church et al., 2007). Only one 
particle containing As was found using SEM, however it is possible that 
As exists as a trace element in particles smaller than the resolution of the 
SEM and is not within the detection limits of the EDS system (<0.1 wt %; 
Kuisma-Kursula, 2000). 

4.5. Lead 

Throughout the Spokane Indian Reservation, there are potentially 
low levels of lead contamination in airborne particulate matter. 
Although lead has been found as a contaminant in other environmental 
media associated with the Midnite Mine (U.S. EPA, 2005a; Church et al., 
2007), and some of the uranium minerals of the mine are known to be 
rich in lead (Nash and Lehrman, 1975; Ludwig et al., 1981), the spatial 
distribution of lead contamination in airborne particulate matter does 
not appear to be related to the Midnite Mine or the Dawn Mill. The 
highest areas of lead contamination are instead located along 
Wellpinit-Westend Road. Lead particulate matter is most commonly 
sourced from vehicular exhaust (Valavanidis et al., 2008) which would 
be consistent with what is observed on the Spokane Reservation as well. 
Also of note, several past lead mining operations including Queen, 
Providence, and Fouress, were located directly to the north and south
east of the Spokane Reservation (Campbell and Loofbourow, 1962; 
Becraft and Weis, 1963). Although lead airborne particulate matter does 
not appear to be related to the Midnite Mine, it is still present and is a 
potential concern for local health – even at low concentrations (Vala
vanidis et al., 2008). 

4.6. The Dawn Mill 

The Dawn Mill is a more prominent source of contaminants in 
airborne particulate matter than originally anticipated. In this study, the 
areas surrounding the Dawn Mill were not extensively sampled, how
ever the samples taken at the mill had some of the highest concentra
tions of U, Th, and As. Unlike the mine, the Dawn Mill is not a Superfund 
Site. Its cleanup, which began in 1995 and is still ongoing, is overseen by 
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the Washington State Department of Health. While the Dawn Mill is not 
located on the Spokane Indian Reservation, it is directly adjacent and 
sits above up gradient groundwater. No known studies on the Dawn Mill 
have been published. Based on these findings, further investigations on 
the health and environmental impacts of the Dawn Mill are warranted. 

4.7. Geospatial analysis of elemental abundances 

Geospatial analysis shows that there is spatial variation associated 
with both absolute concentrations (Fig. 6) and Igeo indices interpolated 
from Midnite Mine to Dawn Mill using inverse distance weighting (IDW) 
for multivariate interpolation across this landscape (Fig. 7). These maps 
provide constraints for future extensive sampling for determination of 
concentration of metals as well as an interpolation to compare and test 
these distributions. Furthermore, these estimated distributions provide 
context for any future medical or environmental health surveys by 
providing a means to identify and prioritize areas related to various 
population activities (housing, work and subsistence activities, impor
tant transportation routes). 

4.8. Disparities in health among native American populations 

Uranium mining pollution on Indian reservations is common. During 
the uranium boom from the 1940s–1980s, mining and production of U 
heavily affected Native American lands, which tend to be rich in mineral 
deposits. The Navajo Nation alone had over 1000 mines and four ura
nium mills on their lands (Moore-Nall, 2015). During this time, many 
Native American workers were eager to have employment at uranium 
mines, but they were not made aware of the hazards associated with 
radiation exposure. 

Throughout the scientific literature there is a general lack of health 
studies on Native American populations. One potential reason for this is 
that they are usually small communities that cannot provide the large 
sample sizes desired by researchers. However, there are numerous 
studies which show high levels of toxic pollutants from mines on Indian 
reservations (e.g., Marron, 1989; Ong et al., 2014; Hund et al., 2015) 
and there are well documented disparities in the health and mortality 
rates of Native American populations (e.g., Lewis et al., 2017). An in
crease in inclusion of Native American communities in toxicological 
studies is greatly needed. Correspondingly, no detailed health studies 
have ever been conducted on the Spokane Indian Reservation. Given the 
results of this study, and the results of previous investigations at the 
Midnite Mine, and the concerns of the Spokane Tribe regarding disease 
rates on the reservation (McDermott, 2019), future studies are needed 
and should focus specifically on the health of residents in relation to 
local uranium mining and milling activities. This investigation therefore 
provides much-needed environmental context for future investigations 
of disease where historic exposure to dust may be associated with 
negative health outcomes (Moore-Nall, 2015; McDermott, 2019). 

5. Conclusions 

The findings presented in this study demonstrate that airborne par
ticulate matter pollution containing U, Th, Pb, and As has occurred on 
the Spokane Indian Reservation. Although challenging to detect, SEM 
investigations confirm that U- and Th-bearing particles on the surface of 
tree bark occur in size fractions that can be inhaled (the PM10 size 
fraction) and have the potential to reach the deep lung (PM2.5). Bulk 
elemental analyses of sampled tree bark from Pinus ponderosa trees 
across the reservation reveal U and Pb concentrations up to 232 ppb and 
104 ppb respectively, with Th and As at an order of magnitude lower 
concentration (maximum of 20 ppb). Geospatial modeling indicates that 
sources of U, Th, and As airborne particulate matter are likely centered 
around the Midnite Mine access road and the Dawn Mill and therefore 
provides a basis for more detailed future sampling. Geospatial analyses 
work to validate the long-standing concerns that airborne particulate 

matter pollution from the Midnite Mine is a potential concern for the 
health of populations throughout the reservation. 

Future systematic medical studies to investigate the health impacts 
on the reservation resulting from particulate matter pollution from the 
Midnite Mine and the Dawn Mill are warranted. The results of this study 
have provided the material and geospatial contexts to guide these future 
landscape-level investigations of disease on the Spokane Indian 
Reservation. 
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