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Introduction

The Earth-Moon system resulted from a giant
impact between proto-Earth and a small Mars-
sized object (Theia). Solidification of the coa-
lesced material resulted in internal differentiation
and the establishment of a core-mantle-crust
structure (e.g., Smith et al. 1970; Wood et al.
1970; Gagnepain-Beyneix et al. 2006; Weber
et al. 2011; Trønnes et al. 2019). As it exists
today, the lunar mantle is the likely result of dif-
ferentiation of a Moon-wide magma ocean, the
lunar magma ocean (or LMO; Smith et al. 1970;
Wood et al. 1970). The depth of this primordial
LMO has been extensively investigated over the
past half century with estimates ranging from
several 100 km (i.e., a shallow LMO) to scenarios
in which the whole Moon was completely molten
following the giant impact event (e.g., Minear and
Fletcher 1978; Charlier et al. 2018; Steenstra et al.
2020). Despite a lack of consensus regarding
depth, most Moon-forming models do at least
agree that the LMO existed Moon-wide. These
models also generally agree that the onset of
LMO solidification was marked by crystallization
and settling of dense Mg-rich olivine and

orthopyroxene, thus establishing early mafic man-
tle cumulates at the base of the LMO (Fig. 1, e.g.,
Charlier et al. 2018; Li et al. 2019; Moriarty III
et al. 2021). As cooling and crystallization con-
tinued, clinopyroxene and anorthitic plagioclase
feldspar became liquidus phases. The relatively
denser pyroxene crystals continued sinking, while
the relatively less dense feldspar crystals rose
(or “floated”) to establish a primordial flotation
crust (e.g., Walker and Hays 1977; Warren 1990;
Dygert et al. 2017). As solidification progressed,
the residual LMOmelt became relatively enriched
in incompatible elements (e.g., K, REEs, P, Th,
and U,) leading to the generation of an urKREEP
reservoir (Fig. 1; Warren and Wasson 1979), and
KREEP-rich clinopyroxenes. Further differentia-
tion led to the crystallization of trace phosphates,
and the formation of oxides, along with dense,
late-stage cumulates, including ilmenite-bearing
cumulates (IBCs; e.g., Zhao et al. 2019). The
establishment of these late-stage cumulates prior
to complete LMO solidification is proposed to
have then initiated overturn (or “gravitational
restructuring”; Moriarty III et al. 2021) of the
lunar mantle due to density instabilities. This
reorganization may have involved as much as
50–70% of the IBCs sinking diapirically toward
the earlier-formed mafic mantle cumulates,
largely without disturbing the shallow urKREEP
reservoir (Zhao et al. 2019). These early LMO
processes were later followed by partial melting
of the olivine and pyroxene cumulates to produce
the younger mare basalts. Collectively, these
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events have led to the broadly stratified lunar
mantle that exists today.

Geophysical Constraints

To date, no samples of the deep lunar interior have
been unequivocally confirmed to exist either as
exposed sections on the Moon, or within the sam-
ple collections (Moriarty III et al. 2021; Qian et al.
2021). Knowledge of the Moon’s interior struc-
ture is therefore primarily derived from geophys-
ical observations (see summary in Fig. 2). The
collection of lunar geophysical data began during
the Apollo program through the Apollo Lunar
Surface Experiment Package (ALSEP). A variety
of datasets were collected both via active source
experimentation and passive listening and are
summarized in detail by Nunn et al. (2020).
Instruments deployed included a surface gravime-
ter, heat-flow probes, retroreflectors, seismome-
ters, and surface magnetometers (e.g., Wieczorek
2009; Garcia et al. 2019). The seismometers

yielded the highest resolution data and operated
from 1969 to 1977 during which they detected
28 shallow moonquakes, ~7000 deep moon-
quakes, and ~1800 meteoroid impacts
(Wieczorek 2009; Garcia et al. 2019). As summa-
rized in Civilini et al. (2021), there are four, nat-
urally occurring, primary sources of lunar
seismicity. These include moonquakes at shallow
and deep levels (see Fig. 2), impacts, and thermal
events associated with significant changes in tem-
perature between day and night conditions. Nunn
et al. (2020) and Garcia et al. (2019) further dis-
tinguish impacts into (1) artificial impacts on the
lunar surface and (2) meteoroid strikes. Interest-
ingly, at the time of the Apollo missions, scientists
did not expect to catalog moonquakes, hence their
existence was a discovery in itself (see Nakamura
2015, for a historical summary). From the recent
work of Watters et al. (2019), the origin of eight
shallow moonquakes detected via ALSEP was
attributed to fault activity on young thrust faults,
with six of these occurring during times when the
Moon was close to its apogee (and thus likely

Mantle, Fig. 1 Summary
of LMO processes leading
to the establishment of
olivine-pyroxene (�
ilmenite) -bearing
cumulates at depth, an
anorthitic, primary flotation
crust, and an incompatible
trace element-enriched
reservoir (urKREEP)
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experiencing maximum compressional stress). In
contrast, deep moonquakes at ~800–1200 km
depth were the most commonly detected seismic
events during ALSEP. These events have since
been correlated to tidal stresses and to an increase
in the brittle-ductile transition temperature within
the lunar mantle (Kawamura et al. 2017).

From data acquired on the lunar surface during
the Apollo missions, scientists have also deter-
mined that the lunar mantle is probably anhydrous
and has temperatures well below the mantle soli-
dus for depths <1000 km (e.g., Karato 2013;
Khan et al. 2014; Kuskov and Kronrod 2009;
Longhi 2006; Garcia et al. 2019). Garcia et al.
(2019) provide a recent review of the understand-
ing of lunar structure at the time of writing. Cur-
rent models suggest that the lunar mantle extends
from the base of the crust at ~40 km depth (a crust
which includes a ~10 km zone of brecciation at a
depth of ~30 km), to the potential small lunar core
at ~1400 km depth (Gagnepain-Beyneix et al.
2006; Wieczorek et al. 2013; Khan et al. 2014;
Garcia et al. 2019). Seismic velocities for P and
S waves in the lunar upper mantle range from 7.6
to 7.8 km/s and 4.35 to 4.45 km/s, respectively,
while at depths associated with deep moonquakes
(>740 km), seismic velocities increase to
~8.15 km/s and ~4.15 km/s, respectively

(Gagnepain-Beyneix et al. 2006). Since the
deployment of the Apollo network, scientists
have debated the existence of a midmantle discon-
tinuity corresponding to an upper depleted mantle
of potential pyroxenite composition, a lower,
magnesian-rich, primitive mantle, and a disconti-
nuity at ~1200 km depth (�1600 �C) where melt
may reside (e.g., Nakamura 1983, 2005;
Gagnepain-Beyneix et al. 2006; Nimmo et al.
2012; Khan et al. 2014; Wieczorek et al. 2006;
Garcia et al. 2019).

Remote Sensing Constraints

From high resolution gravity data retrieved via the
GRAIL (Gravity Recovery and Interior Labora-
tory) spacecraft, numerous regions of mass con-
centration associated with large positive gravity
anomalies have been identified. These so-called
“mascons” are associated with the Moon’s impact
basins including those that are, and are not,
infilled with basaltic lava (Melosh et al. 2013).
From the recent work of Zhao et al. (2021), 3-D
inversion of GRAIL data was used to propose that
following an impact event and the collapse of a
transient crater, lunar mantle material upwelled to
fill the crater and establish high-density

Mantle, Fig. 2 Simplified
cross section of the lunar
interior. Note the presence
of shallow and deep
moonquakes on the lunar
nearside and the largest
impact basin in the Solar
System, the South Pole-
Aitken Basin, on the lunar
farside. (Modified from
Wieczorek et al. 2006)
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lithologies beneath the Moon’s basins as observed
today. The materials that comprise impact basin
rings have the potential to originate from a variety
of depths within the lunar interior with Lemelin
et al. (2019) recently demonstrating that the inner-
most rings are often dominated by anorthosite.
However, from their detailed mineralogical
assessment of data acquired via the SELENE
(Kaguya) Multiband Imager, a “mantle compo-
nent” was also proposed to exist with ultramafic
material potentially also present below the single
pixel scale (<62 m in this case).

The largest impact structure on the Moon is the
South Pole-Aitken (SPA) Basin, which has a
2900 km diameter stretching from the lunar
south pole up to Aitken Crater at the equatorial
region of the lunar farside. At its deepest point,
the SPA Basin is approximately 8 km deeper than
the average lunar surface and 12 km deeper than
the surrounding feldspathic highlands crust
(Smith et al. 2010). It has therefore been proposed
that either the SPA-forming impact event or a
subsequent crater generated within the SPA may
have exposed lunar mantle material. However, to
date, no such lithologies have been confirmed.
From analysis of data retrieved via the Moon
Mineralogy Mapper (M3) on board the Lunar
Reconnaissance Orbiter (LRO), an olivine-rich
exposure was identified within the central peak
ring of Schrödinger Crater; however, Kramer et al.
(2013) argue that this exposure represents either a
dunitic or troctolitic intrusion. Unloading of crust
in this region due to the SPA basin-forming
impact has occurred, thus creating a gravity anom-
aly in the SPA region (Pieters et al. 1997; James
et al. 2019). This uplifting has likely led to more
mafic lithologies existing within the SPA center
(e.g., Borst et al. 2012). Nonetheless, no lunar
mantle-derived materials have been unambigu-
ously confirmed to exist in the lunar surface via
remote sensing (Moriarty III and Pieters 2018).

Lithological Constraints

In addition to potential exposure via impact pro-
cesses, physical samples of lunar mantle litholo-
gies may have also been transported to the surface

as xenoliths in mare basalts (e.g., Shearer et al.
2015). However, Shearer et al. (2015) note that
even examples of deep crustal material are rare in
the lunar collection and mantle-derived material
has never been found.

In terms of the returned Apollo, Luna, and
Chang’e-5 sample collections, and the lunar mete-
orite suites, mantle lithologies have not been
unambiguously confirmed. However, dunitic
clasts have been identified within several samples
and have been proposed as potentially
representing the lunar mantle (Moriarty III et al.
2021). In terms of samples collected on the lunar
surface, Shearer et al. (2015) provide a compre-
hensive overview of olivine-rich samples includ-
ing the dunite within the high-Ti Apollo mare
basalt sample 74,275, and the dunitic clasts and
olivine megacrysts within the Apollo 17 high-Mg
rocks (samples 72,415–72,418). At present, the
geochemical signatures of these samples are
inconsistent with an unequivocal lunar mantle
origin but may instead represent (primary LMO)
cumulate olivine and/or Mg-suite magmatism
(e.g., Dymek et al. 1975; Elardo et al. 2011;
Wang et al. 2015). Dunite fragments have also
been identified in several of the Apollo 14 brec-
cias, the origins of which have been attributed to
the deep lunar crust, potentially as cumulate mate-
rials (e.g., Warren et al. 1987). From the meteorite
collections, a dunitic clast within impact melt
breccia sample Northwest Africa (NWA) 11,421
has most recently been proposed as being derived
from the lunar mantle, in particular from a region
within the mantle which has been significantly
tectonized and recrystallized (Treiman and
Semprich 2019, 2021).

Geochemical Constraints

Additional insights into the structure and compo-
sition of the lunar mantle have been gained via
geochemical investigations of the lunar mare
basalts and volcanic glasses. These materials orig-
inated as partial melts of the mantle and thus have
been used to model LMO crystallization and
assess the establishment of geochemically distinct
reservoirs within the lunar interior (e.g., Neal
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2001; Shearer et al. 2006; Taylor et al. 2006;
Wieczorek et al. 2006; Elardo et al. 2011; Tartèse
et al. 2019). As summarized by Wieczorek et al.
(2006) and Tartèse et al. (2019, and references
therein), the lunar mare source regions are gener-
ally low in alkali and siderophile elemental abun-
dances, have nonchondritic Sm-Nd and Lu-Hf
isotopic compositions, and exhibit low-volatile
budgets relative to their terrestrial counterparts,
including low-oxygen fugacities (see McCubbin
et al. 2015 for a review of lunar volatile budgets).
Nonchondritic trace element abundances indicate
that the lunar mantle experienced differentiation
early in the Moon’s history. As described previ-
ously, plagioclase feldspar became a liquidus
phase during LMO solidification and crystallized
out, establishing the anorthositic primary flotation
crust. As the Moon is a reducing environment,
europium (Eu) exists primarily in the divalent
state and therefore readily substitutes for Ca in
the crystal structure of anorthite; thus, the crystal-
lization of an anorthite-rich feldspathic crust
depleted the lunar mantle in Eu. This process is
evidenced by a strong negative Eu anomaly in the
chondrite-normalized rare earth element patterns
of the mantle-derived lunar mare basalts and vol-
canic glasses (e.g., Shearer et al. 2006; Grove and
Krawczynski 2009). Beyond this, the mantle is
laterally (and vertically) geochemically heteroge-
neous (e.g., Grove and Krawczynski 2009;
Shearer et al. 2006; Elkins-Tanton et al. 2011;
Hallis et al. 2014). This heterogeneity is exempli-
fied by the variable titanium (Ti) contents of the
mare basalts which range in TiO2 from <1 wt. %
to >12 wt. %: the very low-Ti, low-Ti, and high-
Ti basalts (e.g., Neal and Taylor 1992; Shearer
et al. 2006), while the volcanic glasses range
from <0.25 wt. % to >16 wt. % (Shearer and
Papike 1993; Grove and Krawczynski 2009).
The relatively low Ti contents of some of these
lunar materials reflect partial melting of early
formed lunar mantle cumulates which were dom-
inated by olivine and pyroxene, and generally
lacked Ti-bearing phases (e.g., ilmenite). Dense
Ti-bearing oxide minerals crystallized during the
later stages of LMO differentiation forming
Ti-rich source regions, i.e., IBCs, within the
lunar mantle (e.g., Shearer et al. 2006; Elardo

et al. 2011; Elkins-Tanton et al. 2011, and refer-
ences therein). This ultimately led to the mantle
restructuring described earlier and generating lat-
eral geochemical heterogeneities within at least
the shallow mantle (e.g., Elkins-Tanton et al.
2011; Hallis et al. 2014). A discussion of the
bulk composition of the whole lunar mantle and
the challenges associated with determining this
are provided in Shearer et al. (2006), Taylor
et al. (2006), Tartèse et al. (2019).

Another component of bulk lunar mantle
chemistry (and mineralogy) which has received a
lot of attention over the past half century is the role
(or not) of garnet (e.g., Anderson 1975; Neal
2001; Jing et al. 2022). As a phase rich in alumi-
num (Al), it plays a critical role in governing the
Moon’s Al budget, which is critical for anorthitic
flotation crust production. As summarized in Jing
et al. (2022), various approaches have been pre-
viously taken to evaluate the presence of garnet at
depth within the Moon from high-pressure exper-
iments to seismology, to geochemical modeling.
Using an experimental approach and a fixed
starting bulk Moon composition, Jing et al.
(2022) recently demonstrated the stability of gar-
net at depth, specifically in the lower mantle at up
to 20 wt. % in deep mantle cumulates. From this,
the REE characteristics of high KREEP composi-
tions could also be matched during late stage
LMO crystallization. While no garnet has been
physically identified in lunar samples, the geo-
chemical signatures of lunar volcanic products,
namely a subset of the volcanic glasses, are con-
sistent with the presence of garnet at depth (Neal
2001). In this case however, a primitive garnet-
bearing reservoir which remained unmelted dur-
ing the LMO is proposed as the source.

Additional geochemical complexity within the
lunar interior is associated with the proposed
urKREEP reservoir (Fig. 1; Warren and Wasson
1979; Warren 1985). This incompatible trace
element-enriched reservoir is proposed to have
formed during the final stages of the LMO, spe-
cifically following ~99% solidification, and is
understood to exist at the base of the lunar crust
(e.g., Wieczorek et al. 2006). While the spatial
extent of this reservoir at depth remains poorly
constrained, the chlorine isotopic compositions of
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lunar apatites were recently used to propose that
the urKREEP reservoir experienced significant
degassing as a result of the primordial lunar crust
being punctured via impact events prior to final
LMO solidification (Barnes et al. 2016). Evidence
for the existence of the urKREEP reservoir is
derived from the KREEP-rich nature of select
mare basalt suites. From bulk-elemental geo-
chemistry, it is evident that some lunar mare
magmas likely assimilated KREEPy material
(i.e., Apollo 11 group A basalts, Apollo 14 very
high potassium basalts, and Apollo 15 KREEP
basalts); however, the full extent of KREEP
assimilation by lunar basaltic and plutonic
magmas remains unknown (e.g., Taylor et al.
2006; Shearer et al. 2015, Elardo et al. 2020).
Thus, at the time of writing it is not fully under-
stood whether the trace element enrichment of
some mare basalt groups represents contamina-
tion by urKREEP-derived material, a distinct
mantle source generated during gravitational
restructuring, or a combination of both.

Cross-References

▶Differentiation of the Lunar Interior
▶ Internal Structure/Mantle Motions of the Moon
▶Mantle Convection
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